Stereoselective Construction of Tetrahydrofuran by Tin (IV) Chloride Promoted [3+2] Cycloaddition of Allylsilane to α -Keto Ester

Takahiko AKIYAMA,* Keiichiro ISHIKAWA, and Shoichiro OZAKI*

Department of Applied Chemistry, Faculty of Engineering, Ehime University, Bunkyo-cho, Matsuyama 790

SnCl₄ promoted [3+2] cycloaddition reactions of allylsilane to α -keto esters afforded tri- and tetrasubstituted tetrahydrofurans with excellent stereoselectivity via 1,2-silyl migration in good yields.

Substituted tetrahydrofuran are present in so many biologically interesting natural products. Preparation of substituted tetrahydrofuran in stereo-defined manner continues a challenge. Herein we describe a novel method for the stereoselective synthesis of 2,2-disubstituted tetrahydrofuran, which is constructed by SnCl4 promoted [3+2] cycloaddition of allylsilane²⁾ and α -keto ester via 1,2-silyl migration. Thus, allylsilane (1) represents a very useful synthetic equivalent of 2-silyl-substituted 1,3-dipole. Panek have reported Lewis acid promoted addition of allylsilane to aldehyde leading to substituted tetrahydrofurans via 1,2-silyl migration. The reaction of allylsilane with ketone, however, has not been documented except one example, in which a tetrahydrofuran was obtained as a minor product.

At first, the reaction of an α-keto ester (2) with allyltrimethylsilane (3a) was examined. The order of the addition of the reagents appears to be crucial for the formation of the tetrahydrofurans. Addition of 2 to a solution of 3a (1.2 equiv) and SnCl₄ (1.1 equiv) in CH₂Cl₂ at -78 °C for 30 min afforded a homoallyl alcohol 5 in 81% yield and none of the tetrahydrofuran was obtained. Either addition of SnCl₄ to a solution of 2 and 3a or addition of 3a to a mixture of 2 and SnCl₄ afforded 4a albeit in a low yield (19%). After screening the reaction conditions in consideration of the fact that 4a is labile under acidic conditions,⁸ we have found that 4a was best obtained by a dropwise addition of a dilute solution of SnCl₄ (1.1 equiv) in CH₂Cl₂ to a mixture of 3a and 2 in CH₂Cl₂, affording 4a in 50% yield (Table 1, Entry 1). It should be added that the present cycloaddition with several conventional Lewis acids such as TiCl₄, AlCl₃, SnCl₂, Sn(OTf)₂, BF₃•OEt₂, and

ZnCl₂ gave none of the desired [3+2] adduct **4a**. The effects of the substituents on silicon were next examined. The reaction with allyldimethylphenylsilane (**3b**) gave **4b** in 54% yield (Entry 2). Use of a sterically demanding allylsilane **3c** led to the preferential formation of **4c** in 85% yield (Entry 3).^{9,10})

Table 1. Results of the addition of allylsilanes to 2a)

Entry	Si	Reaction Conditions	Product	Yield /%	Yield of 5 /%
1	SiMe ₃ (3a)	r.t., 5 min	4 a	50	41
2	SiPhMe ₂ (3b)	r.t., 5 min	4 b	54	46
3	SiMe ₂ Bu ^t (3c)	–78 °C, 5 min	4 c	85	6

a) The reactions were run in CH₂Cl₂ with SnCl₄ (1.1 equiv) and allylsilane (1.2 equiv).

Next butenylsilane (6) was employed as an allylsilane and the results are shown in Table 2. It is noted that 6 showed higher propensity to form tetrahydrofurans. The cycloaddition reactions of 6 to 2 took place smoothly to afford a 2,2,4,5-substituted tetrahydrofuran 7 in an excellent yield (Entry 1). The cycloaddition to ethyl pyruvate as well as biacetyl proceeded smoothly to afford tetrahydrofurans 8 and 9 in good yields (Entries 2 and 3). Alkyl-substituent α to silicon appears to facilitate the tetrahydrofuran formation.

Table 2. $SnCl_4$ promoted cycloaddition of allylsilane (6) to α -keto ester and 1,2-diketone^{a)}

Entry	Substrate	AllyIsilane	Products	Yield/%
1	2	SiMe ₂ Ph CH ₃ 6	EtO Ph. O MCH ₃ 7	82
2	CH ₃ OEt	6	EtO CH ₃ O CH ₃ 8	75
3 (CH ₃ CH ₃	6	CH ₃ O CH ₃ 9	55

a) α -Keto ester or 1,2-diketoene was treated with allylsilane (1.2 equiv) and $SnCl_4$ (1.1 equiv) in CH_2Cl_2 at room temperature for 5 min.

The present cycloaddition reactions exhibited excellent levels of diastereoselection, producing the tetrahydrofurans with de's reaching >96% as determined by ^{1}H and ^{13}C NMR. 10 The relative stereochemisty

of 4a and 7 was unambiguously determined by multiple NOE study of an acetate 10 derived from 4a and 11 derived from 7 respectively. The stereochemistry of other tetrahydrofurans were estimated by the analogy.

Present cycloaddition

reaction takes place via 1,2-silyl migration in competition with elimination of the silyl group, which results in homoallyl alcohols. t-Butyldimethylsilyl group plays a role of both stabilizing the β -carbocation and retarding the elimination. Thus t-butyldimethyl-substituted allylsilane 3c afforded the tetrahydrofuran in a high yield. α -Alkyl-substituted allylsilane 6 also showed higher propensity to form 5-membered ring (Table 2) presumably because 1,2-silyl shift is favorable due to the formation of a secondary carbocation.

The stereochemical outcome exerted in the $SnCl_4$ -mediated cycloaddition of allylsilane to α -keto esters leading to the tetrahydrofuran can be rationalized by synclinical transition state and the stereochemistry of methyl substituent was explained by the antiperiplanar transition state.

Thus tri- and tetrasubstituted tetrahydrofurans were obtained with excellent diastereoselectivity. Furthermore, because a trimethylsilyl group can be cleaved under basic conditions, ¹¹⁾ and dimethylphenylsilyl group are to be transformed into hydroxyl group with retention of the configuration by oxidation, ^{6a,12)} the present reaction provides a novel method for the preparation of 2,2-disubstituted tetrahydrofurans.

The authors are grateful to Dr. Katsuhiko Tomooka (Tokyo Institute of Technology) for the valuable suggestions about NOE experiments.

References

- 1) J. W. Westley, "Polyether Antibiotics," Marcel Decker, New York (1982), Vol. 1-2.
- 2) Recent reviews on the chemistry of allylsilanes; I. Fleming, J. Dunogues, and R. Smithers, *Org. React.*, 37, 57 (1989); J. S. Panek, "Comprehensive Org. Synth.," ed by B. M. Trost, Pergamon Press, Oxford (1991), Vol. 1, pp. 579-627; I. Fleming, "Comprehensive Org. Synth.," ed by B. M. Trost, Pergamon Press, Oxford (1991), Vol. 2, pp. 563-593.
- Formation of cyclopentanes and other 5-membered ring derivatives via 1,2-migration of Si group; R. L. Danheiser, D. J. Carini, and A. Basak, J. Am. Chem. Soc., 103, 1604 (1981); R. L. Danheiser, D. J. Carini, D. M. Fink, and A. Basak, Tetrahedron, 39, 935 (1983); R. L. Danheiser and D. M. Fink, Tetrahedron Lett., 26, 2513 (1985); H.-J. Knölker, P. G. Jones, and J.-B. Pannek, Synlett, 1990, 429; B. B. Snider and Q. Zhang, J. Org. Chem., 56, 4908 (1991); R. L. Danheiser, B. R. Dixon, and R. W. Gleason, ibid., 57, 6094 (1992); J. S. Panek and N. F. Jain, ibid., 58, 2345 (1993); R. L. Danheiser, T. Takahashi, B. Bertok, and B. R. Dixon, Tetrahedron Lett., 34, 3845 (1993); H.-J. Knölker and R. Graf,

- ibid., 34, 4765 (1993); H.-J. Knölker, N. Foitzik, H. Goesmann, and R. Graf, Angew. Chem., Int. Ed. Engl., 32, 1081 (1993); J. S. Panek and R. T. Beresis, J. Am. Chem. Soc., 115, 7898 (1993).
- 4) Formation of cyclopropane; S. Yamazaki, S. Katoh, and S. Yamabe, J. Org. Chem., 57, 4 (1992).
- 5) Formation of dihydrofuran and furan derivatives; J. Pornet, L. Miginiac, K. Jaworski, and B. Randrianoelina, *Organometallics*, 4, 333 (1985); R. L. Danheiser, C. A. Kwasigroch, and Y.-M. Tsai, *J. Am. Chem. Soc.*, 107, 7233 (1985); R. L. Danheiser, E. J. Stoner, H. Koyama, D. S. Yamashita, and C. A. Klade, *ibid.*, 111, 4407 (1989).
- a) J. S. Panek and M. Yang, J. Am. Chem. Soc., 113, 9868 (1991);
 b) J. S. Panek and R. Beresis, J. Org. Chem., 58, 809 (1993).
- 7) J. K. Whitesell, K. Nabona, and D. Deyo, J. Org. Chem., 54, 2258 (1989).
- 8) Treatment of **4a** with SnCl₄ (1.2 equiv) in CH₃CN at room temperature for 25 min afforded **5** in 74% yield.
- 9) A typical experimental procedure is as follows: To a solution of 2 (80.0 mg, 0.449 mmol) and 3c (84.3 mg, 0.539 mmol) in CH₂Cl₂ (1.0 ml) was added dropwise a 0.2 mol/l solution of tin (IV) chloride in CH₂Cl₂ (2.3 ml, 0.46 mmol) at -78 °C. After being stirred at room temperature for 5 min, the reaction mixture was quenched by addition of triethylamine (0.1 ml) followed by H₂O (5 ml). The aqueous layer was extracted with ethyl acetate and the combined organic layers were washed with brine, and dried over anhydrous Na₂SO₄, and concentrated to dryness. Purification of the crude mixture by preparative TLC (SiO₂, hexane: ethyl acetate = 7:1, v/v) afforded 4c (128 mg, 85.2%) and 5 (6.4 mg, 6.4%).
- 10) The structure was established by ¹H NMR, ¹³C NMR and DEPT spectra. Significant spectral data are shown; **4a**: ¹H NMR (270MHz, CDCl₃) δ= 7.64-7.19 (5H, aromatic), 4.26 (1H, t, J=8.2 Hz, H-5), 4.17 (2H, q, J=7.0 Hz, OCH₂CH₃), 3.83 (1H, dd, J=8.2 and 11.9 Hz, H-5), 2.45 (1H, dd, J=8.5 and 12.5 Hz, H-3), 2.39 (1H, dd, J= 11.9 and 12.5 Hz, H-3), 1.43-1.23 (1H, m, H-4), 1.22 (3H, t, J= 7.0 Hz, OCH₂CH₃), and 0.01 (9H, s, Si(CH₃)₃); ¹³C NMR (68 Hz, CDCl₃) δ= 173.20 (C=O), 141.80, 128.01, 127.45, 125.44, 87.55 (C-2), 71.79 (C-5), 61.41 (OCH₂CH₃), 40.39 (C-3), 25.90 (C-4), 14.00 (OCH₂CH₃), and -2.93 (Si(CH₃)₃); **4c**: ¹H NMR (270MHz, CDCl₃) δ= 7.61-7.47 (2H, m, aromatic) 7.20-7.40 (3H, m, aromatic), 4.28 (1H, t, J=8.2 Hz, H-5), 4.17 (2H, q, J=7.0 Hz, OCH₂CH₃), 3.83 (1H, dd, J=8.2 and 11.9 Hz, H-5), 2.51-2.38 (2H, m, H-3), 1.53-1.34 (1H, m, H-4), 1.21 (3H, t, J=7.0 Hz, OCH₂CH₃), 0.85 (9H, s, SiC(CH₃)₃), -0.02 (3H, s, Si(CH₃), and -0.05 (3H, s, Si(CH₃)); ¹³C NMR (68 Hz, CDCl₃) δ=173.26 (C=O),

144.75, 128.02, 127.45, 125.42, 87.18 (C-2), 72.04 (C-5), 61.39 (OCH₂CH₃), 40.99 (C-3), 26.63 (SiC(CH₃)₃), 23.06 (C-4), 16.62 (SiC(CH₃)₃), 14.01 (OCH₂CH₃), -7.19 (SiCH₃), and -7.93 (SiCH₃).

- 11) Treatment of an alcohol (12), obtained by LiAlH₄ reduction of 4a, with potassium t-butoxide in dimethylsulfoxide afforded desilylated product in 46% yield although the yield is not optimized.
- 12) E. W. Colvin, "Comprehensive Org. Synth.," ed by B. M. Trost, Pergamon Press, Oxford (1991), Vol. 7, pp. 641-651; M. Murakami, M. Suginome, K. Fujimoto, H. Nakamura, P. G. Andersson, and Y. Ito, J. Am. Chem. Soc., 115, 6487 (1993).

(Received December 20, 1993)